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SINGULAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS

Introduction

Since so few differential equations can be igtegrated exactly,
it is important to develop approximate methods for solving such
equations., One important approximation method, and almost the only
one, is to express the desired solution of a differential equation as
a modification or perturbation of the solution of a simpler, that is,
more nearly solvable, equation., This method is known as the method
of perturbations and its validity usually depends on the fact that
the modification in the equation or in the solution is small in some
sense, Frequently, the smallness of the perturbation depends on the
size of some parameter in the equation and we may be able to express
the desired solution as a convergent power series in terms of the

parameter,

We shall discuss the perturbation method for ordinary differential
equations depending upon a small parameter €, We begin in Chapter I
with the regular case, that is, the case where naive methods give the
desired solution and sometimes even give it as a convergent power series
in the parameter. As illustrations of this procedure, we shall obtain
the Neumann series and the Fredholm expansion for the solution of an
integral equation., We shall also indicafe how to obtain the solution
of the eigenvalue problem for an ordinary differential eyuation as

a power series in € ,
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- In Chapter II we Begin the study of singular perturbation

pf;blems, that is, problems in which the standard methods fail and

XY

some special device has to bé"eﬁployed. We consider differential

"eqUations in which the coefficient of the hiéhest derivative is

s
¢

multiplied by the shail parameter e; therefore, in the limit as ¢
approaches zefo,,the order of the differential equation is lowered
and we have:too'mahy boundary condifions. The question of whether
the limiting problem‘mékes sense and -if so, which, if any, of the
given boundary‘conditions should be used will be discussed iﬁ a

very general case, It is also shown that the boundary conditions

which are lost give rise to a'”boundary layer" effect.

In Chapter III we treat the relaxation oscillations for

The

problem is to find the period of the.oscillation in terms of the
: , : #

parameter, We shall obtain two terms in the expansion for the

Van der Pol's equation with a large value of the parameter,

period, -




Chapter I

REGULAR PERTURBATIONS

Iteration and the Neumann Series

Consider the problem of solving the equation
(L Iu -eMu = f

where u 1is a given function and L and M are given operators.

We assume that we know how to solve the ecuation
v = ¢

and wish to use the solution of this eguation to solve (1), Suppose
the inverse operator L_l is known. Applying it to (1), we get
(2) u -eKu = g,
where we have put
LM = K, iy - 8.
We solve (2) by an iteration method., We write it as
(3) u=g + ckKu

and then obtain-a sequence of approximations by putting

UgalysUsyene

(4 u

el g + eKun, n=0,1,2,...

u

i}

0 g-
There are now two problems. First, to show that the sejuence u,

converges to a limit and secondly, to show that this limit satisfies (3).

The usual procedure for investigating the convergence of the

sequence begins by obtaining an estimate for the difference of




successive approximations. From (4) we have

(5 u -u = ¢g(Ku - Ku DI
. n n

n+l n-1
Note that we do not assume that K is a linear operator., Intrcduce
some norm, that is, a msasure for the closeness of two functions v

and w and let ﬁs denote it by the symbol ||v - w“. For example,

one possibility is to take
v = wll = max]v(x) - w(x)]|

for x in some interval of interest, Put

(6) pn+l = llun+l - un“'

We suppose that the operator K is such that

= Cp .

@ lka, - % Il < cllu, - u Il =co

Then, because of (5)

2 n
< < < e <
Pps1 = Cpn =¢C Pp-1 = S © Pp-

Using this estimate, we see that the infinite series

(8) u. + (u

0 - uo) + (u2 - ul) + e

1

is majorized by the series

Hugll + 0y + oy + +ee
or by
® n
llugll + oy = G
0
This series converges if (C) < 1 and therefore (8) also converges.
But the nth partial sum of (8) is u therefore, the sequence u

converges to a limit.

The proof that this limit satisfies equation (3) depends upon

the operator K having some kind of continuity.
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We shall not discuss, this questign further,

As an illustration of the method, we consider the prqblem'of

finding a solution of the non-linear ordinary differential equation
(9) y' = f(x,y)

with y(0) = Yo Note that we have omitted the parameter € because
it is not needed for convergence of the iteration method., Inverting

(9), we get
x
Yy =y + 5 flE,y(®)lar.
(0]

Just as in (4), we set up an iteration procedure., We put yo(x) =¥

and

(10) y

x
n+1(x) =¥ * g f[ann(E)]dZ.

For a norm we use

P () =y g -yl = ly G -y GO

n+l
To prove the sequence yn(x) converges, we need some condition on
f(x,y). We assume that

'6f(g§x)' <c

for all y and 0 < x < a. Then

¥, (&)
|etz,y, 1 - ez,y,_ 01| = |5 HURVN
(8) M
Y,-1CE
o yn(z)
< |f Cdn
Yn—l(z)

IA

cly () -y (&) = co (2).
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From (10), we have

y171+l

: x
(x) - yn(':s) = é £IZ,y, (21 - flE,y_ (&)1 d
: : °
‘épﬂ'us}ng_(ll) we -get
! Qi Loy g - K -
il N, (12) Ppa (¥ S C b p, (E)AZ.
' o 0

The proof of convergence can be completed as before if we can
obtain an estimate for pn(x) such that the series
Gy : [¢0)

B . 7,0 & .

con&epges. We shall show later how such an estimate can be derived

from a\more'éeneral'ihtegral inequality than (12).

Let.us consider another illustration of the iteration procedure,

. .
The problem is to find a solution x(t) of
X +x.= £(x,x,t)
. such that x(0) = A and x'(0) = 0. Here we may consider Ix as X + x
* and Mx = f(x,i,t). The inverse operator to L is easily found and we
obtain :
] t
. x = Acost + § flx(t),%(t),tlsin(t - T)d7 .
O -
We set up the customary iteration as follows:
1 X = Acos t ‘
; t
= 2 r 2 i -
X, = Acost + é fon(T),xn(T),1151n(t T)dr .
But now, we see that the estimate for x_ _(t) - x (t) will depend 0
n+l - n
also on an estimate for x (%) - x_ (7). @
! - n n-1
“ '




The simplest way to avoid estima*ing the derivatives is to
(-] .

reformulate the problem in terms of the following system of two
. 3 .

first-order differential equations;

o

Ld
X =V

v = =-x + f(x,v,t)

with the conditions x(0) = A, v(0) = O, It is easy to obtain the

following iteration procedure: -

Xn+l(t)

e
Acost + § flx (%), v _(7),t)sin(t - v)dT
0 n n -
(13)

t
v ,1(t) = - Asint + (5D £lx (7), v _(7),7lcos(t - T)dv

with xo(t) = A, vo(t) = 0. We use as a norm

(t) = max {Ixn+l(t) - xn(t)|, |Vn+l(t) - Vn(t)l} .

Pn+l
Again, a condition on the derivatives .
af(Z,1,7) Af(Z,n,7)
a4 ? On

is needed. If m(T) is a bound for the sum of the absolute values
of these derivatives, we can obtain from (13) the ineguality
t
<
(14) P (E) S é m(T)p (Tt .

If this ineguality were an equality, and po(t) equalled a constant

bo, we would find that
M(£)™
pn(t) = n: bo




where
t
M(t) = § m(w)de .
0

This suggests putting in (14)

M(t)"
Pn(t) = __HT_bn(t)'

After this substitution, (14) becomes

n+1l ’ t n
(1) ¢ § MDDy (mar

0 .

M(t)
(n + 1)! n+l

Put Bn = max bn(t) for O < t £ a. Then this inequality implies that

mO™ Ly M@ oMyt
(n + 1)! n+l = n 4 n! T n (n + 1)!
or
b (t) < B
n+l —n
L3
< < H C t < < aee < i
for 0 <t £ aj conseguently, Bn+1 < Bn < Bn-l < < Bl' This shows

that the sequence of B is bounded and then

n
(15) p (t) < B MEL |

-

Note that a similar result can be obtained for (12). We have

m(t) = C, M(t) = Ct and ) p
' (ct)®

n! s

<
pn(t) = Bl

Using the estimate given in (15), we find that o

@
M(t)
<
z pn(t) < Bje ,

1
a convergent result, which shows that the iteration procedure defined

in (13) converges to a l1imit,
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The series‘will-chvgrge?

K in-(4) is linear, In;épéh é case

woe.
n+1.

g + EKuh:"'-:' g * eK(g .+ fE‘KL'.i'g-.- :

g + eKg +:é2K?gn_,

We thus obtain

o ‘ @ il 7
'(16) u =g +’£’(§K)igi

e

onvergence is ‘that %hg;eigehvalue_of‘ ek
with smallest abSquféfvéluééhéye:maghitudégleés than one,

‘It should be noted that thé infinite series (16) Gould also be’
obtained by assuming  u  has.a sepies’exéans;on'in_powers of _e. such as .

substituting this in (QD'andAequating the coefficieénts of cbrrespondiﬁg

powers of € on each sidé:of.fhe resulﬁing eqﬁétion.

Fredholm Expansion

The Neumann. series given in -(16) converges: in generéi onij fér
sufficiently small values of g, cEredholﬁ-shOWéd'HOW to obtain an
expansion for the solution of (k) whiéh‘ié-vélid for all values of €
for which the solution to (4) exists.  Of course, the. operator K
must be assumed linear. We shall obfaiﬁ this expansion in a formal
manner and ignore the im ortant questibn of proving the convergence

of the expansion,
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The solution of (4) may be written as .

(@7) u=(I- eK) g ,

where I is the identity operator., If we consider the case where K
is a finite-dimensional matrix, the soluticn (17) breaks down when

the determinant of I - eK is zero. Put
D(e) = det(I - eK).

We shall state later the meaning of the determinant of a non-matrix *

operator,

Rewrite (17) as follows

eD(K,¢e)
(18) u:[l-’-—D(W:Ig
[
where
eD(K,e) -1
I+—D—(€T (I—EK) .

This implies

KD(e )

(19) D(K,e) = SR

If K is a finite-dimensional matrix, the formula (19) suggests that

D(K,e) would be regular for all values of & because the singularities

of (I - EK)_l occur at the zeros of D(e) and would be cancelled "
by the factor D(e) in the numerator, It seems reasonable to expect,

therefore, that both D(K,e) and D(e) would have expansions in

powers of € which would converge for all values of ¢.

Before we obtain these expansions, we wish to define the determinant
of a general operator. If € 1is small enough, we may define

log(I - €K) by the power series

(ex)”
n

]
»Mg




If I - eK is a matrix with eigenvalues SR SRRy then

m
(o]
det(I - €K) = xl,xz,---,xm = exp(f? logky).
But 1log(I'- e€K) has the eigenvalues logxl,---,logxm and

m
trace log(I - eK) = T logh_;
) y

therefore, for a matrix we obtain the formula

(20) det(I - €K) = expltr log(I - eK)],

“where tr stands for trace,
Formula (20) can be used to define the determinant of (I - €K)

for general operators K if the trace of these operators can be

defined, We shall defige trace only for integral operators. Suppose

b
(21) " Kg = § kix,y)e(y)dy
. a
then
b
(22) tr K = | k(y,y)dy.
a
Suppose
. ® (_)n n
(23) D(e) = 2 oo
and
® (_)n n
(24) D(K;e) = = =——B_¢
o n! n

where c, are constants and Bnﬂ are operators. Using (20), we find

that

' 0 (40} (€0}
(25) log D(e) = trllog(Il - eK)] = -tr = = ey
1 1 nn
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®
where.
(26) k_ = tr K%,
_ n
Differentiating (25), we get
‘D'(e) @ on-1 K
(ﬁy) - D(e) - ~ f € .kn = - tr T - ek °
or -
® n ®
D'(e) = = ——i:l——7 e "t - - (= ™k IDCe).
0 (n-1)!"n 1 n

Multiplying the two series on the right-hand side and equating coefficients -
of corresponding powers of €, we get a set of linear equations from .

which c, could be determined. Soon, we shall obtain & more useful

formula for cn.

From (19) we have
D(K,e) - €KD(K,e) = KD(e).

Substituting the series (23) and (24) in this equation and comparing

the coefficients of corresponding powers of e, we get - ]

(28) Bn + nKBn_1 = cnK

for n = 0,1,2,.... Note that from (23), ¢y =1, By = K.

Again use (19) and take the trace of both sides. We find

K

T-ex- "D

tr D(K,e) = D(g) tr

by the use of (27). Comparing corresponding powers of g, we obtain

the promised formula for C namely,

(29) c =trB .




= = . e e,

T

Formulas (28) and (29) énaﬁle us to determine c, and Bn by

-succession, We find

¢g = 1L, BO': K
(30) ¢, =k, B =kK-K
1 i =), &l
2 2 :
c, = kl - kZ’,B2 = (kl - k2)K = ZKBl,
etc. This is as far as we can go in the general case. However, if

we assume that- K is an integral operator, as Fredholm did, we can

_give sdme.elegant determinantal ‘representations for Bn and c e
: N B B ) o . .

We .assume
. ‘b . . B
Kg = §. K(x,7)e(y)dy
a ..

where K(x,y) is called the kernel- of the-integral operator K,

oIg gnﬁx;y) is thé kernel for-'BA,' then (28) becomes
.

s a = a o b. B .
L) - B (xy) +n i K(x,2)B ;) (2,5)dz = ¢ K(x,y),
and (29) becomeé
- T T b .
(32) S i B_1(¥,¥)dy

With these notépions, tﬁe formulas k}O) may be written as follows:

L b |K(t,t)) K(tg.t) b
B (ty,t,) = § dt, : S A § K(t,t )at,
a K(tl’tE) K(tl t_) a - .
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' _ K(tg,t5)  K(to,ty) (bt
By(tgats) = i i dbydb, | K(ty,b,) OK(ty b)) K(ty,8)|,
K(tZ’tB) K(tE’tl) K(t2’t2)

b

5 = i t5By (t5,t,).

It is clear what the general form of B (t_,t ) and ¢ should
n O n+l” - n
be. By mathematical induction using (31)'and (32), it is not difficult

to prove the formulas correct, We leave the details to the reader.

Perturbation of Eigenvalues

Consider the problem of finding the eigenvalues of the linear
operator L + &M 'if the eigenvalues and eigenfunctions of L are
known. The problem is to find values of A for which there exist

non-zero solutions of
(33) (L + eM)u = Au.
Here both L and M are linear operators and we assume L is

self-adjoint.

Suppose u is an eigenfunction of L corresponding ‘to the

0
eigenvalue xo and we wish to find the eigenvalue of L + eM which
approaches XO as €& approaches zero, "Assume’
@®
k
A= KO + 2 € Xk
1
and
@®
k
U= ug o+ i e Uy

where the xk and uk(k > 1) are to be determined. Substitute these

expansions for A and u into (%33) and equate the coefficients of the




e e e & D —— s> ¢

o

corresponding poweré of € on each side of the resulting equation,

In .this way we obtain the foliow;ng set of equations:

(34) : LuO = AOuO'.
(25) @ - Aghyy =
etc,

®

‘Xl.- M)uo :

(Al - M)ul + A.u

2°0°

The first of these equations is automatically satisfied by our

choice of KO and u.,

and. ul.

‘homogeneous equatio

(L - )\O)Y

has a non-zero solution v =u
existence of a solution

hand side be -orthogonal to u

5u0(x1 -

2
. Ay ﬁuo = Squu

and thus defines A

n

Y

= 0

o*

O’

M)u. = O.

1

o)

‘This equation implies

0

Ih the second equation we do not know Xl

In general, this equation has no solution because the

A necessary condition for the

of the second eduation is that theiright-

‘that is,

. With this definition of Al equation (35)

will in general have an infinite number of solutions because to any

par£icular solution v

‘arbitrary constant,

il

We choose

yed

of (35) we may add I

1

where a is an

10 1

so that if
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1

then

This will be satisfied if
. 28 .
oy fug = - Sugvy - . F

Equation (36) may be treated similarly. It will have a solution

only if the right-hand side is orthogonel'to Ups that is, if
fu (A, = Mu, + XA.SuZ =0 '
0" 1 2 o~ 7 :
This equation determines XZ. If. v2 is new a particular SOIﬁtion
. of (36), then -
u2 = v2 + azuo
is also a soiution. We choose - &. sO th&t SR - b .

2
Sugy = 0,
that is, a, . satisfies the equation

. - |
§Voug + ayfug = 0:

in a éimilar.way,'we caﬁ‘sucdeseive;y determine Xn, u, and,
ﬁﬁus obﬁain,the‘Complete expansion.fof A 'ahd u. Uhder‘fairly general
conditiens on the opefetors L and M, it can be shown that ?he
expansions converge fer‘sufficientiy small values of ~ €, Notice
that, because of the.way ehe 'a‘s weee chosen, the eigenfunction-

u determined by the expansion is such that . ) .My

2
Suuy = fug.




15

Chapter II
I

SINGULAR PERTURBATIONS

Introduction * 0 g . ' @

In ‘the last section of Chapter T we have discussed a methed for
finding the eigenvalues of a complicated operator as perturbations of the
eigeﬂﬁalueéAfor a simpler operator. In the present chapter we shall
discuss operatqgs for which ihe.proposed method breaks doﬁnrand for
which a more sophistiéatéd approach is heéaed. The type:of,difficulty
" we shéll_treaﬁ is iilgstrated’in the following example given by .

Lord.Rayleigh:

Find the values of X\ for which there exist non-zero solutions of

(1) . o e o u' = AU

such that w(0) ='u'(0) = u(1) = ut(1) =0,

This eigenvalue problem when treated by the method of the preceding

chapter leads to the equation
. +
(2) ‘ - u" = \u
with the boundary conditions wu(0) = u'(0) = u(l) = u'(l) = 0. For any
[ ] ..
value of A, the only solution of (2) satisfying all four boundary
conditions is u identically zero and the perturbation method breaks

down before we can even begin.

A problem such as (1) for which the simple perturbation techniques

explained in Chapter I do not work will be called a singular perturbation
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problem. The singularity-is obviously due to the fact that the zeroth
order equatlop, that is, the equation for = O, is of lower order
than the original equation (1) and we are troubled by a plethoré of
boundary'cé%ditioné. This chapter will' treat the genergl case of an

operator L + &M, where L 1is a differential operator of the nth

order, M a dlfferentlal operator of the mth ofder énd m > n. We

shall discuss both the elgenvalue problem for L + eM and the solution

of the non-homogeneous equation
(L + eM)u = f,

and also give a priori rules for determining which boundary conditions

will be used.

“The Exact Solution for thé Rayleigh Problem .

Beﬂduse equatlon (1) has constant coefflclents, it can be solved
'exactly. Assume. u = e’ * is a.solutlpn of (1);~then r. must satlsfy
the equatlon:’

_ET -r2. = N
. 2 : :
Solving for - r—, we get
RO I .
of ) - € _ o .. y
We assume £ small and positive and equal to n2 and ‘consider first the

positive square root-in (3). We find

r? = 2.1 21 2+ 0(a*) _ “2[1 + nq” + 0(n™) 1.
2n




“a

) . ] . . 'Y
Taking the square root of this, we get

—l[l + l'kﬁz + O(qA)].

(4) ' r=gEs=E g 5

1 —

From the negative square root in (3) we find

2 1~ [1+ 202 - 2204 +.0(n9)]

by =

2q2 "o
5 o Ml = qu) +'d(n4) 4 . ®
and
(5) r=i.ir2=ii>\l/2(l —%nz) +O(n4)-
Using (4) and (5), the solutions of (1) are linear combinations of
.eI:lX e—rlx . 54 e . % 3
Y ., sinrgx, ‘cos ryx.
.Le’c"gs take
r X -1 X

u—‘—asifzr2x+ﬁcosrx+«(+e +Y_e.

2

. where d, Bs Yi» and y_ are constants that will be determined to fit

the boundary conditions. We have

u(0) =0=0+p + Yy oy
u"(O)..‘.:.O = T+ Ot vy - TIY_ s .
. o C - o —r'lf
u(l) =0 = asinr, + pcosr, + T tre T '
o . ' _ i3 ‘ '—r:L
. .‘u'.(l') =0 =.r2~agos r, - rysinT, triy,e T -Tye .

These four linear equations for a, B, Yy and y_ have a non-zero solution .




k-

- for small values of 1.

if :argd only if the determinant of the coefficients is zero, that is, if

- and only’ if

0 1 1 il
r2 0 . rl —rl
(6) : ' | = o.
sin r ‘cos r erl . e_rl
2 2
r, Ccos ’ sinr r er:L —1" e-r:L
S ) T2 2 1

Note that in (4) Ty has .béen define_a so that its real part is positive
. . '. . . N Tr' . . ° - .

This implies that e = goes exponentially to

ZEeTO. ‘as'.»:q . goes to égero. .This_fact eliminates ‘the 1aét two elements in

the -fourth column of (6). .Multiply the third column of (6) by & so

"as to get exponentially small factors in the first two elements of the

third colwm. Because, of this condition (6)‘ is equivalent’ to the

- .'f"ollowin'g:. D i . g
o 1 : o 1
2 o o 0 o T
0 = Ty e R

. sin.r, cos r, 1 0
;'2'-cos r2 —r351n r2 rl 0
0 1

- + oz,
sin T, 0

Since ry approaches infinity as n approaches zero, we conclude that in




the limit we must ha&e

sin T, = 0.
e L/ .
However, from (5), r, = A in the limit; therefore,
(7) . sin N = 0,

or \ = n2n2 for n > 1.

This' result shows that in the limit tﬁe'eigenvalue problem for (1)
.goes:intd the eigenvalue problem for (2) with the boundary coﬁditions
u(0). = u(1l) = 0. Using (7) and the boundary conditions, we can see that
é;so the eigenfunction of (1) approaches the eigenfunction of (2) with‘

zero boundary conditions, namely, sin nmnx.

Boundary Layer Efféct -

We Have'jus£ showﬁ that as " e gpproaqheé zero.the eigénfuﬁd£ions
.er (1) approach éin n%x.v' This'seems.péradoxiéglpggcaﬁ;é; even though
u = ;;n nn¥. satisfiés the 1imé£;ng équatio£,<2y and some of.the boundarf'
conditions, it does not éatiéfy'the'coﬂdifidns'?u}(o) = ﬁ[(i) = 0u - We ..
proceed to investigate how the Boundéry condition .u'(O).=,O ‘is 1ést
as’ & approaches zero. .

To study.the behavior of the solutions .of (i) near " x = 0, we

"stretch" the x-axis by-putting .

x = nt

in (1). The equation becomes
(8) T-oU = anu




20

where dots denote differentiation with respect to t. The boundary
conditions at t =0 are still u(0) =u'(0) =0 but the boundary con-
ditions at. x = 1  become conditions at t = q—l which approaches infinity.
Notice, however, that t = o« does not correspond to one value of x but
to all values of x such that q_lx is unbounded. Because of this, we
cannot apply the conditions at x = 1. Instead, we try to find a
solution of (8) or, more precisely, of the limiting form of (8), that is,
(9) w8 = o,
such that u will, for large values of t, fit in or match the function
Uy = sin mnx = sin nnnt.. ‘

Any solution of (9) that satisfies the boundary conditions

u(0) = u'(0) = 0 can be written as

(00 ws alet-eH Fp ot

where a and B are arbitrary constants. To have this "solution fit into -

the function éin.nnqt, it is c}earithat, first, a ﬁust be.zeré. - Next,

if we let " t .éo to infinity but-in Suéhla.fashion that x is”smail (thig

can be done by taking -t = q—l/? ‘and .x = gl/g), the functioﬁ.fsin.nnnt

can be approximated by. mnntj cbﬁsequéntly,'faf u  to behave like

~mnnt when t is lafge, we must ‘take B = -mn. We therefore conclude.

that the appropriate solution of”(Q) is
A siﬁilar argument can be made for the neighborhood of x=1. 16:2)

we introduce the stfetched coordinate e

l-x=91




into (1) and go to the limit n = 0, we again obtain the equation

(12) WV _ar =0

with the conditions u=u'=0 for T=0 and u behaves like sin m(l-T)
as T approaches infinity. The solution of (12) satisfying these con-
ditions is

cosnn(l - T - e Ymn

cos nn[rnq(l - e(l—f)/n) - hn(;'— x)]L

(13)

e
|

A ‘study of (ll) and (13) explalns the paradox1cal behavior of the
zeroth—order elgenfunctlons at the boundary condltlons.- The actual eigen- "’
functlon, for n# O, behaves llke (11) in the nelghborhood of x=0

and like (13) in the nelghborhood of X = l' thus, the actual elgenfunction

.satisfies all four boundary condltlons. But as both- (ll) and (13) 1nd1cate,

as 'x moves away from elther endp01nt the exponentlal terms damp out very
qulckly and the actual elgenfunctlon goes over 1nto 's111nnx, the zeroth-
order elgenfunctlon Thls 51tuat10n is 1llustrated, ‘on an exaggerated .

I

sca}e, in Fig. i.

eq.l1) -q.[!:!]—\
x.

0 .q" -9

‘ FIGURE 1 ‘
The behavior of the curve at x=0 and x =1 .is'typical of that which
occurs in boundary layer problems in fluid flow. We shall call boundary

layer effect any such occurrence in which a very sudden transition occurs

between two parts of a solution.
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First Order Correction to the Eigenvalues

To obtain an improved value for the eigenvalues of (1), we use (8) .
after replacing u on the right-hand side by the zeroth order approxi-
mation sin /X x thus obtaining

(14) T-4% = ¢ sind® gt .

We solve this equation in the neighborhood of x = 0 with the boundary
conditions u=u' =0 at t=0 and u matches sin nmnt as t

approaches infinity. A'particular solution{of this equation is the

function
sinJ\ qt
1+ q2x
For the complementary solution we shall use the function; et, e—t and

. the functions cos nmnt and sin nnnt instead of the functions 1 &nd
t. We choose the cosine and sine functions because they are the exact

solutions of the 1imit equation (2). We therefore put

2

_ sinJ nt + acésnnqt + Bsinnmnt + Y+et + oy P
1+ X\ ; -

* . where aj; B, Yy Y. are to be determined to fit the boundary coﬁdiﬁions.
Tn order that u not go-to infinity as t goes to infinity, we mst

.have"y+ = Q. To satisfy the conditions uw =0 and u' = 0, we find -
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To have u match with sin nmqt as t goes to infinity, we must have

p+ (1 + qzx)'l =
and W\ approach nm. Neglecting terms of order qz, we conclude that
(15) u = §}M)£_f]_t_ - WX n(cos nmt - e—t)
1 +q9N

§1n_>\2_}5 - N n(cos nmx - e_x/q).
1+ a7N

Formula (15) gives the correct {(to order qz) behavior of the eigen-
function near x = 0 and also in the middle of the interval 0 < x < 1.
To find the c;orrecwt behavior of the eiéepfunctién near X =1, we put
1 -x=mqm in (1) and obtain ' "

- = q2>\u.

We de51re the solutlon of thls whlch satlsfles the condltlons u E u! =0 .

. . '
at T =0 and ag‘aln S Sehes 'Sln )\ x = s:.nr\/_ (l = m:) as - approaches

infinity. Just as in- (15), we. flnd that
oy = 8dn f‘/)‘ T " q J_ (cos nrrm: - e-'r)
‘.. cos ,\4)\ (1+n x) T

(16) - ~ L a ‘
o =" Sin"éx (1-x) J)x [cos nw(l—x) (l—x)/q
'(l+q X)cos.JK

correct to terms of order qz.,’
In order that (15).'~a.rid (16) represent-the same solution we Imisi; have

'sin"xx—q.\/xcos nmx

M + n N cos nm-cos nmx,
| cos AN '
or

(17) cos WX x sina/A = n WX\ cos nrx(l + cos /X cos nm).




.

.fandfum'>;hiﬁ
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Clearly, /X = nn in the lowest order. If we put

\[i = nnm + Klq

in (17), we find

sin X\ 2nqnm

1M

correct to order q2; therefore, xl = 2nn and

R o= (1 + 27).

. The eigenfunction to this order is

)

. sin.nn(l + 2n)x- 2 o O

The Geﬁeréi:baéé_i;"

‘equation -

(1é§5

“where

“If £ =0 .and L =Ly = ‘whéré'»io',is'a differential

-operator of -the same form as 3ng, .then'(l8) becomes an eigenvalue problem;

'otherwisé, we shail call it fhe'hdn-homogeneous problem. In both cases,

"‘fo:méke khe.ﬁroblém preéise we‘must have m boﬁn&ary conditions which we
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.fepreeéei:QS'felioﬁe{'f
(o) 0, -1 RO
Bl(u) =y 1 (a) + = al.u(J)(a) =@
=1 -
: 3 5 0<La; Lay L er e <m
(qS) Gs—l ( )
Bs(u) = (a) + = a_.u J (a) =0
j:
(19)
B = u P (n) ) (D) =0
gt S E JE .Blju : =
. : 0L P <By< o'< B <m
. (B ) Pyt .(n)
B.(u) =u )+ oz Bysu I (p) = o.
D .
"Here Gi’Aaij;:ﬁiG B;j “are éiven cohetante.and.‘m;hzeiﬁ.. X

-When e goes. to zero in (18), the dlfferentlal equetien feducee to

_a dlfferentlal equatlon of lower order, namely,ﬁ.

| Lu;'..:f.ff'- ot

"and Just as in the Raylelgh example, we must determlne whlch of the

“boundary condltlons in (19) w1ll be retalned. ~In- order to determlne

thls, we need to know the asymptotlc behav1or of the solutlons of the

.....

homogeneous.equatlon‘

(29).. ;.n': “ A:.: | ~' :Lu . gﬁﬁij;"ge""'
It'és‘convenient to.eut £ i.ﬁt.r-.We“write g?é)'as
(21) Iu = #ntMu

and we shall show that this equation has n solutions which are

anaiytic




- solutlons of (21)
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power’ series in e (It is assumed that By (x) and- qu(x) are analytic
functlons of x in ax<b and p (x f 0 in that interval DI
1nd1cate the 1dea. Let u (x) , be any'solution of

Iu = O

neglecting boundary conditidns. Put

(22) u, () = w(x) + kgl qkujk(x), 1

I

[

IN
el

in (21) and compare corresponding powers of 1. We find

,Lujk(x) = —Muj,k—t(x)'

Lét ujk(x) be' the solution of this equation such that the solution and
its firét n-l derivatives are zeéro ét X = a. It is clear'that this’

solution exists and is unique. Thus, starting with' u: (x),” we can

SuqcessiVeiy'find'éll the ujk(x)‘ and thus obtain the expan51on (22) for' .
uj(x). It cen be shown that the expan51on is. an asymptotlc one. By
,ch0031ng Y (x), (1< J < n) as n 11nearly 1ndependent solutlonsi

- l-of Ia = O,, it is clear that we - shall get n linearly 1ndependent

E

. To obtaln t other 1inear1y 1ndependent solutions of (21), we begln'

by cons1der1ng the characterlstlc equatlon

(2 g et =

"If we assume qn(x) #0 for a < x<b, this equation has for every x

in (a,b) t sclutions, namely, the t t¥  roots of —pn(x)/qn(x). We
shall assume that

Re r(x) # O




- for_eye?&; glzin (a,b) Land any root of (23).

_For:any root r(x) of (23) we shall construct an asymptotic
expansion of a solution to (21). For simplicity of exposition, we shall
show how the first two terms of the expansion can be obtained. The
infinite expansion can be obtained in a.similar fashion. For further

.detalls we.. refer to a paper by Jurgen Moser in Communlcatlons on Pure- and

. T'Applled Mathematlcs, vol.,VIII" 955¢3pp. 251—279. . "3“

':It 15 1mportant to dlstlngulsh between Re - r(x) > O and Re r(x) < O.- ”n S

E We shall denote a solutlon of \21) correspondlng to Ahe case Re r(x) >~0

be v(x) and a solutlon correspondlng to: the case Re r(x) < 0. by w(x)

" Note that .. - -

yen .
pn(X){r Vozf_q[r vl:,;a
" ’ . . .
m
+ q (x){r o s q[r vl +
after neglectjng terms of 0 .

b(@r'+q<@r1vﬁ=o,




S [n(n )82 ¢ (D)) + [, e 4

1(p ™ 4 qmr ) +

s qm_lr, ]vo'+'vo"(npnrn_1 + mqérm_l) = Q.

Because of equation (23), the first of these equations is satisfied.for

arbitrary vO(X) and the second equation reduces to

(2z) v ![np (x)rn_1 + mq (x)rm_l] + v [§£§:ll P F 2o
L Ve .0 ) m 0~ 2 n =
,;;-%::j' J.~ m{ m= l) m-2_, n-1 m-1lq _
o + 2 - QT T +p 4T +ay 4T ] = 0.
"The coefficieﬁt'ofnlvo' 1n (24) can never be zero because, if.it were,

bs would be a multiple root of (23) - whlch is known ‘to be imp0551ble,

consequently, (24) lS a. llnear ordlnary dlfferentlal equatlon ‘for v (x)

.whlch cen_be solved by-separatlon of.verlables.'

It is easy to show that a 51mllar procedure will enable us to g

zdetermlne a complete expan51on for v(x). The proof that 1t 1s an

asymptotic expansion of a solutlon of (Zl) w1ll be found-in the paper of

J. Moser cited prev1ouely,_

The Lost Boundary Conditions

Let us return to (18).. For the non—homogeneous problem let Yy be

a particular solution of-(18). Then a solutlon u(x) of” (21) mst be
found such that u+uO satisfies the boundary COnditioms (19). Similarly,
in the eigenvalue problem s solution u of (21) must be found satisfying

the boundary conditions (19). We wish to determine which boundary conditions

will be retained in the limit € or n equals zero.




- '(25)
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" The previous s;ctions have sh9§n that the solutions of (21) can be
divided among three classes: the functions ul(x),..:,un(x) which
were obtained in (22) b&'startigé with solutions of Lu = 0, the
functions vl(x),...,vpr), where p i$ an integer not greater Fhén it
which were obtained in the preceding section on the assumption ‘Re r(*) >0,
and, finally, the functions wl<k);...,wt_p(x), which are obtained

similarly to the -v(x) but on the assumption that Re r(x) < O.
If- u is a solution of (21), we may write
u=agup et aﬁun<f 5lv1 SRR A T i A A
o o @ J
and then ﬁhélboundary conditions will.giVe us equations such as these:

Bk(u ) + ree +a Bk(u + ﬁlBk(v ) + see 4. B Bk(v ) +°

+. YlBk(w +"-:'f Yt—PBk(wt—é ..: Bk(u 1<k S.ms:

-.'The ex1stence of a solution of these llnear eguatlons w111 depend on the,

: behav1or of the determlnant of the: coefflclents, that is, -on the determlnant

Bl.(‘Tilﬂ B, N ‘Bi(ﬁ"’l).";"lBll(Vp) ' 'Bi(wl) ?1("7"3;?)

--fBS(vﬁ) CB(wg) e B (w )

t-p

Bs+1(un) Bs*f(vl) L

Bale) BTy Bon(n ) Byy1 (g p)

B (u)) - 'Bm(ﬁn.) | Bm'('vl') Bm('vp) B Gw) B vy ) N




"last m=-s rows w111 have . the factor

the'last' mts

. h .. . . : B ) H . . r . ¥ 30 .‘ -
’ ) A A e . 5 M
.l . - . b -

s, ..

Suppose that s (x) has the exponentlal factor exp[q-lhk(x)] where

’ o = o ) N w X
PP .. I () L :

and Re rk(x) > 03 “then the quantity exp[q—lhk(b)]

large compared to° ekp[q-lh (a)]. If we multiply:tﬁ,‘;

.

taining v, by exp[- hk(b)]’ the flrst,

which goes exponentially. to.zero as 1 géqgg”tb%gpfb

the first. s rows. of the v-columns will go toLZero{

Slmllarly, by multlplylng “the. W

There 1s one further factlﬂ
of_ v(x) or oP w(x)

of the exponentlal. As

goes. to ZETO compared to B (v)

to zerovcomparéd to B (w)

see that the 1ead1ng term 1n A “is obtalned by expandlng thejfollow1ng

"determinant: - B
= _.. '.,. e s St « *L° .~ . ) c e e a w ..J




0 B :(wl) ese 1(w p)
0 0 s+ 0

and B

modlfled by the

must. be: discarded and only'fm—Z‘,cop@itions.ere.}etaiﬁed;

:Dlscard 8- bounda;y condltlon at an endp01nt for each solution

Yop (21) that becomes e;ponentlally large there (relative to its. behav1or

Kat the other endpoint). Discard the boundary condltlons in decrea51ng

order 6f magnitude of the highest derivative present in the boundary

condition. 4

5
.
.
.




For tﬁe proéent'p?obiem éiﬂceotheré;are' p functions ¥(x) which
become exponentially large at x =35,_f%e discard boundary conditions
Bm’ B -1’

become exponentially large at x = a, we discard boundary conditions Bs;

ooy B _and since there ara t - p functions w(x) which

-p+l’

‘B . The count is right because t conditions will be

diacardeq and m--t=n will be retained.

‘ Whatthappéns if thefé ‘are more exponentially large functions at an
.endp01nt than there are boundary conditions? For examplée, what happens
C4f s - t + p. < 17 In that case, the ‘solution of (18) will not approach

) 3a l;mlt;as € - goes to zero. Con31ﬁor the following exampleu

S e R '

A2n)y o0 s T Teu 4 aut =1
~with u(0) =u'(0) = 0. The solution of ‘this equation is
: (gg)f- CE o honfe o K e 00g o e—ax/s).

Do Nl E O - S a 2 T
T . . B g m 2 e g 5 : . .
' If a > 0, -so tha% the solution eT§X/£ is exponentiaiiy large at. x=0
'(compared to 1ts va!ue é_%/snzat = l), then (28). approaches the Tt
. x/a. ThlS 11m1t is also tHe solutlon of the'limit of equation (27),.
f.:;ﬁaﬁély,-' . . :

cLoau' = 1

wlth the hlghest derlvatlve boundary condltlon ku'-?‘O) discarded and

' the other boundary condltlon (u —.O) retalned,

) .If a <0, thé'aolaiiong e ax/e 1s eXponentlally 1arge at X = 1}.'
but there is no.boundary condition at x 7_1. -Note, however, thap‘ﬁ282 :

does not converge to a limit. in this case.
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. . Chapter IIT e A B R K

RELAXATION OSCILLATIONS - ..

A interesting type of singular peftufbation occurs in the study of

the Van der Pol eduation
1" 2 ] -
(1) y'-pl =¥yt +ry=o0

when the parameter .p is' very large. If we change the independént

variable from t to pt and put e ='p—2, equation (1) becomes
N S 2
(2) o . Ey—_(l—‘y)y+y—0
where dots denote differentiation with respect to the new varf%ble.:'Put._‘

y = %. in (2) and integrate to get the following form of the equétion:'.
o . Co3
NG - -E) dx=o.

We shall show that (3) has pefigdic solutiAns and we shall fiﬁq:ﬁhe_
period T asyﬁptoticall& iﬂ:.e.;for small vélueg of €. From tﬁe-férm'~
"of (B)Oig is clear tﬁat for. & =0 the-differ;ntiai equaﬁiop.reﬁqégs:ﬁo )
& firs£.orﬁef equation which hés.no‘pefiédic,solﬁfioﬁ;;gééséqﬁeﬁtly; the

;'pefturbatibn around € =0 is singular.. e

The analysis of (3) becomes simplér ﬁhpn time is,éliminatedg S
Since y = %, then X = ydy/dx and (3) can be -written as.

. dy _ ng) -.x
(4) e & = e

where

i

(5) : F(y) v - /3.
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,'_'l-’“':t"' Let us show that any trajectory of (4) tends to a periodic orbit. 1In

Fig. 2 we have drawn the "fundamental" curve

x = F(y). and a trajectory.

P 'a.t,_‘j"'sohé' distance-f I.'o;mr

¢is’ small, ‘the ,v'aljue”.of- dy/dx

L]
.
0
% ; )
. -~ |
- - - L) -
. - .o " N . o .8
> W A 5 SR o I
B L g - Uy .. e e
S D= . o'y orl, A e . . X
. e - :
B < = £ - s . 2 -
= . f T - . SR x
S e % . 5 . . .
. o Bt s, L o , . . 3 .
. K " o~ - o
= 1 o 4 |6 i
- . = - L . -
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must be 1arge and negatlve.' Thus the trajectory mist drop very rapldly
towards the fundamental curve x = F(y) The traJectory'cannot cross
*the fundamental ‘curve for, 1f it dld, the tragectory would be in a region
where 1ts slope is p081t1ve, the value of x is increasing (watch the
arrow!) and the value of y 1is decreasing. The trajectory continues
close to the fundamental curve until it passes the maximum point B and
then, as can be seen from (4), dy/dx becomes 1arge again and the
trajectory drops rapidly to point = C. At C “the traJectory crosses the
fundamental curve and dy/di becomes.negatlve.: The trajectory must stay
close “to the fundamental curve for, otherwlse, :dy/dx becomes very large
and the traJectory is forced back. Note also that the trajectory cannot
" cross. the fundamental curve between C and D because above CD the
traaectory must ‘80 toward the x-axis- w1th a p031t1ve slope and with the
..value of X decrea51ng, condrtlons whlch are 1mpos51ble to satlsfy fhe
conclu51on 1s then that the tragectory is close to the fundamental curve
':along. CD' and then rlses very qulckly to some p01nt E- on the fundamental
curvet After E the traJectory keeps g01ng around 1n essentlally the g

same orblta. A rlgorous proof that a perlodlc traJectory 1s approached

a'- can be found Ain Stokes, "Nonllnear Vlbratlons" Appendlx IV

;: The above dlscu351on has shown that A("_z)’_-§§§§\~

the perlodlc tragectory can be approx1~ f
mated by_two.arcs. AB and CD' of. the

characteristic curve and two' vertical

lines” BC and 'DA - as -indicated in Fig..3.

/!;j

To this approximation>we,may find the )
' , p(-3, -1)
period T. On AB and DC we have A

c3,-2)

FIGURE 3
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Lx = F(y) " but on BC and AD we have x .constantfu Since dt = dx/y,

we have .o ) RIE
. B . 1. 2 41
T:Sd_x._—.gs d_F(L_-_-‘ 25 ’(l _.y2) gl = 2(1ny-'22—)
: J A vz . Z 2
6. . '
' = 3.-2In2.

This naive attempt:su;pfisingly gives the correct first';rder term
for the perio@.. We shall see, however, that to éet a correction term .
requires a gopd'déal of analytic mgﬁipulatﬁgnz. Let us suppose*® ihgt, as
indicated in PFig. 4, we have a.beriodié.trajecédfy which begins at some

point Al on the fundamental curve and goes through the half cycle

indicated by the poirits Al’AZ"'°’A7' The coordinates of Ai will be

is

denoted by (xi,yi), 1<1<7. We specify x, = 2/3, thus A,

. y
A,

FIGU;ZE 4
vertically above B and Yy =1, ‘thus A3 is on the same horizontal

line as B.  The other pointgrﬁill'be specified later.

¥ The method used here follows very closely a paper by W. Wasow in |

"Procedures of Symposiﬁm on Non-Linear Circuit Theory,“p: 87-97.




: ' R ol We begln by.eitlmatlng the dev1at10n’betww'n'the curve
- 53 o L5 e i
i 0 K ES ': -

! ) I ' On the‘grc ALAZAB' - : i
. ! - at A, and’sihbeualgh ag
y ) Al'. If du . 1.
[ have iﬁ‘(7)
(8)
" If du= d
3 . ; ) have for i

The estimate (8) shows that the;dev1at10n from the arc AlB is

of. the order €

0 » L e -we put

i | .. (9) . .i- - y:? l;+ E%/BV,f? x=2/3+ 52/3f ) | S : ‘ N
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in (4),. We'fina G T . i
2 P v2 + l-61/3v3 + T . |
(10) T o= 2 73 . _ |
- ¥Rl le v

As e  approaches zero, this equation may be épproximated by
. = .

. , dv | 2 .
(11)‘ T + v -+ 1 = 0.

Equation (11) is a Riccati equation and with the help of the standard
transformation. 5= : . . o o O

,w'

v o= =

W

jit may be’ transformed to the linear second order equation
(12wt Wt 4w = 0.
The solution.of (125 is -
w o= in(-T)>+ ﬁBi(TT)
where .Ai(p) and _Bi(t).,are Airy functions. (For. the definitions and

properties of these functioﬁs,see-Jeffrgys, "Methgds of Mathematical
. Physics".)
The appropriate solution of (ll) for our problem is the one that
"matches" with the solution of (4) as v —> o but y -1 —>0. Let

us. take v =¢7 where 0<r<1/3. Then y-1-= 81/3 Y >0 as

€ —>0. From (8) and (9) we find that '

0 S.u': 52/3(v2 + 1T+ el/3v/3),£ 82/3v—l.




5o

This ‘simplifies to

. = el/Bv/B M yz + 1 < vl
and for v =-e ¥, we see thdt v= 4T must approach zero as v approaches
infinity; consequently, v is approximately equal to (-'1:)1/2 for large
values of v. Using the general solution (12); we have that

_ ek t(-) + pBU(-T)

\ v = -

"ah;(-T) + gB,(-T)

and by studying the asymptotic behavior of Ai(-r) and Bi(—T) we con-

clude that if v2 + t =0, we must have
Ai'(_T)
(13) vV = e m—,

Ai( -T)

Formila (13) enables us to complete the specification of the

coordinates of AjhsA . The point A

= 0; therefore,

, was defined by X, ='2/3 or

T

A, 1(0)
y, = 1- /35
2,(0)

The point A3 was defined by Y3 =1 or v=0. If Ty is the value

of T such that Ai'(—’L'.B),,= 0, then -

"\ .2/3 ' . ? 9o
= + -
Xy 2/3 + ¢ 2 )
The point A4 has not been defiqéd as yet. Let us take. v, =1 - ¢°
where © < r < 1/3; then v = en_l/B,-—é>m as & —>0. Let <, be

e 4
the smallest value of "t such that Ai(—TA) = 0. (The.valge of T, is. -




40 o : @

~e

" approximately 2.33.) Then from (13) we see that Fom B '_L:_-;“

. ) . .- ....Q —' .-. :2/3' o '-. .
(13 - ' e B -2/3,+..€, T, "

A b v .

in order to_egsure that VA. épproach infinity:
. . . ' °‘
The poinf, A5 is defined as the inteiééctign of the trajeﬁtory ST

[

witﬁ the x-axis; éonsequentl N ?.Ol To £ind - x ,z=ﬁqiu§e
L /o g 5

: X - y .
. 4 i/ T

X, - x, = § dx =.of ”ng-ﬂ A

4 5 : RO u. . ]
X 0" S
Xz o

from (4). We may express u as follows: .
wos (-0 -nrex-2.

.. Since on the arc AAAS the value of x is always increasing (because
dx = ydt > 0) and the value of y ‘' is always decreasing, we have ‘

x -2/3>0 an@l ly-- 1| € 1; therefore,

w2 -0+ ky -0 226 -2,

Using this result, we find that

1-e" 0 l-er

f <2 (y-DFay = oDy
0 u £ .0 - sl
therefore; 0 a ) - : .

Tx, - % = O(el—r) = 0(82/3).
The point Aé. is defined by taking e = Yoy * e Again, we use (4)
‘for dx to get ' .
0
:_SS L.SX..

}E .—. X
> 6 y,7+e
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Y
H

Noting tﬁép Xy = F(y7) and expressing u in terms of coordinates relative

to the poing A7, we have

. uE X=Xt y-y7)3+y7(y—3'.7)2+(y$—1:)(y-y7)
- (15) ' ' '

> (y -yl

Wi gmf:

y - y7)2 + ¥y - yg) + (y,?; -1)]

because x - X, is positive in the lower half plane. The bracket in (15)

has its minimum value when
Y -V, T - 3ys/2,

that is, y = —y7/2. ‘Since this value of y +1is positive, we conclude -0
that the minimum value of the bracket along the arc A6A5 will be at .

y = 0. We Have then that

: o 9 9 2 2. !
u>(y—y7)[%y7—y7+y7 -1] > g(y—y7)-

. Using this estimaté, we get

| o,
% - x5l < ely |5 2 = o(e 1n e).
y7+s  I=Yq

To ‘estimaté X¢ = *; we need another estimate for w. From (7)

we have

du _ .2
vy T ou -1) -ey > -y
since on A6A7 it is clear that y2 >1, u>0 and -y < - Ver
Integrating this inequality, we find , ’
(16) w? > —'2;y (y - v,)
< 6 7




L2

because u =0 for y = Yp+  With the help of (16) , we have
. s YtE
. . 7 . 7
o * d X -1/2
gl <elygl § 0 T = o) 5 (v - y) Wy
. ' 7 u 7
y7 . y7 .

o(e).
°

Finally, combining the previous estimates for the difference between the

values of successive x's, we get

x7 = x7 - X6 +'x6 - x5 + x5 - XA + XA . i .' ’ ,

p o(et ™) = 2/3 + 52/314 + 0(52/3) ‘

(17)

X

by (14). Since = F(y,), we see that
= 7

%(y7-l)2(y7+2) = —82/314,
or,
g 352/3T4
Ypt2 = - —=
(v -1)
therefore, 2/3 .
(18) Yy = -2 - ; 3 = + 0(82/3).

Because the trajectory is symmetric with respect to the origin, we conclude

that -

2 2
(19) . X = §-+.E .yl =2+ ¢ /BTA/B

Now that the coordinates of the pointsAl,Az...,A7 have been determined,. )
we can find the period. Let Tij denote the time to travel between points

A, and’ Aj. From dt = dx/y, we get




o

(25) 2 )
’ = 52/314 + O(z»:z/3 + )

- &2 2l 4
(20) - - S mp =Y e ag M LT E
: - ' el N oo
" But o
. 2 u, . Y2
(21) § &= 2y gy
: AR A
and :
y
. 3
2 . 2,
u, = 5-FG) = By - Ry = § dr(y) = o(e¥?)
: Y2 :
since y3 - yé = 0(81/3). We have .
o YB ' y3 .
2 = o)) Tary) = § ary) +ole)
y2 * P ¥4 y o
Y2 3 2
(22) . . L
_ S £ Y3 : S .
oS T ED Ty +oe) = D 4 b
- y 3 v, o v ¥ :
Yo 2 2
Also, with the use‘of (8), we see that ~
o Y2 Y2 T y2 o
(23) { ‘1—21 < & § —% = ¢in(y - 1) = 0(e 1n €).
A v 7 : ¥y
Combining (20), (21), (22) and (23), we get
S BEEEZE
(24) T, = 9EG) | (e,
y
. yl . 5
Nexé, we evaluate
- ax  _ ) r R
D= i - [1 + o(e )](XA 'xz)




iy

. In ‘t‘:he. .same wa.y', just as we evaluated x = e and x6—x;7, we can

A
show that ) . ' : .
. 3 Y7 5 ) i_r ’
By & = E S'. '{1}: = O(_e. ) -F_Q(E 1n 8.) + 0(e)
8 RS |
\ - A(26) ) - o _ o(e?/j):.. 1

Evaluating (24) and combining with (25) and (26), we get

Ty = % —.ln~2 + 35‘ :52/31:4 + 32/3'54 + 0(82/3)
= .8+3.5é2/3+o(82/3). .
. ' ' . |
Since T = 2T1,7, we obtain finally . !
|
T o= 1.6 + 7.0¢72.




